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Abstract. M4,5 subshells average fluorescence yields (�M4,5) have been determined for thorium and ura-
nium using M4,5 X-ray production cross-sections at 5.96 keV incident photon energy. The measurements
have been performed using a 55Fe annular source and an Ultra-LEGe detector. The present values are
compared with calculated theoretical values and theoretical average M shell fluorescence yields (�M ). Fair
agreement (to within 22–27%) is typically obtained between present average fluorescence yields (�M4,5)
and calculated theoretical values.

PACS. 32.30.Rj X-ray spectra – 32.80.Cy Atomic scattering, cross sections, and form factors; Compton
scattering

1 Introduction

K and L shell X-ray production cross-section data have
been studied extensively whereas measured M shell X-ray
production cross-section data are scarce, due in part to the
complexity associated with the M shell X-ray spectrum.
The number of transitions from higher shells which can
fill an M shell vacancy is much greater than for K or even
L shell vacancies.

Through the literature we have found no experimen-
tal values reported for the M4,5 X-ray production cross-
sections of Th and U. Gowda et al. [1] have reported
M shell X-ray production cross-sections in Ir, Pt, and
Pb due to the bombardment of 4He+ ions of energy
0.4–2.2 MeV. Pajek et al. [2] have measured M shell X-ray
production cross-sections for ten elements for protons of
energy 0.6–4 MeV. Braich et al. [3] have measured the
M shell X-ray cross-section in Pb due to the impact of
protons and nickel ions. Amirabadi et al. [4] have mea-
sured M shell cross-sections of Hg at 0.7–2.9 Mev. Sing
et al. [5,6] have reported M shell X-ray production cross-
sections for Au and Bi induced by F ions in the energy
range of 20 to 102 MeV. Shatendra et al. [7] have mea-
sured M shell fluorescence cross-sections for Au, Pb, Th
and U, using a 55Fe radioactive source. Garg et al. [8] mea-
sured M shell X-ray production/fluorescence (M XRF)
cross-sections for five elements in the range 81 ≤ Z ≤ 92
at 5.96 keV.

M shell fluorescence yields of Bi, Pb, Au and Os have
been determined by Jopson et al. [9]. Deutsch et al. [10]
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have reported the L2,3 and M2,3 fluorescence yields of Cu.
Rao et al. [11] have measured average M shell fluores-
cence yields for Pt, Au and Pb at 5.47 < E < 9.36 keV.
Apaydin et al. [12] have measured total M shell X-ray
production cross-sections and average fluorescence yields
for some heavy elements at photon energy of 5.96 keV.

In the present work, M4,5 X-ray production cross-
sections for Th and U have measured by 5.96 keV photons.
Average shell fluorescence yields for M4,5 subshells have
been evaluated from present experimental M4,5 X-ray pro-
duction cross-sections and photoionization cross-sections.

2 Experimental details

Measurements of cross-sections for the production of Mi

sub-shell X-rays of Th and U were made. The studied com-
pounds were ThOCO3·H2O and UO2(CH3COO)2·2H2O.
The purity of commercially obtained materials was bet-
ter than 99%. Powder samples were sieved to 400 mesh
sizes and prepared by supporting the powder on scotch
tape ∼= 10 mg/cm2 thickness. The experimental geom-
etry is shown in Figure 1. The samples were irradiated
by 5.96 keV photons emitted by an annular 1.85 GBq
55Fe radioactive source. The incident beam and fluores-
cence X-rays emitted from the target were detected and
analyzed with a Ultra-LEGe detector (FWHM 150 eV at
5.9 keV, active area 30 mm2, thickness 5 mm and polymer
window thickness 0.4 µm). The output from the pream-
plifier, with pulse pile-up rejection capability, was fed to
a multi-channel analyzer interfaced with a personal com-
puter provided with suitable software for data acquisition
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Fig. 1. Geometry of experimental set-up.

Fig. 2. M shell X-ray spectrum of U in collision with 5.96 keV
photons.

and a fit program were used for peak analysis. Each target
was recorded for time 5000 s. Figure 2 shows a typical M
X-ray spectrum for U.

3 Data analysis

The experimental Mi X-ray production cross-sections,
σx

Mi (σx
Mα1, σ

x
Mα2, σ

x
Mβ , σx

Mζ1, σ
x
Mζ2) (cm2/g) were evalu-

ated by using the relation [12]
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counts per unit time under the associated elemental pho-
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of the element, m is the thickness of the target in g/cm2
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Fig. 3. Factor I0Gε as a function of mean K X-ray energy.

where µp and µe are the total mass absorption coefficient
of target at primary (5.96 keV) and emitter radiation en-
ergy [13] respectively, θ1 and θ2 are the angles of primary
and emitted radiation with respect to the sample surface.

The term I0Gε, being the product of the incident pho-
ton flux, geometrical factor G and absolute efficiency ε of
the X-ray detector, was determined by collecting the K
X-ray spectra of samples of Si, P, S, KCO3, TiO2, and
V2O3 in the same geometry using the equation:

I0GεK =
NK

βKm σx
K

, (3)

where NK , βK and εK have the same meaning as in equa-
tion (1) except that they correspond to K X-rays instead
of the M X-rays. The measured variation of I0Gε as a
function of the mean K X-ray energy is as shown in
Figure 3. σx

K represent the K X-ray fluorescence cross-
sections and is given as

σx
K = σp

KωK , (4)

where σp
K is the K shell photoionization cross-section [14],

ωK is the K shell fluorescence yield [14].
By using the experimental Mi X-ray production cross-

section values to obtained the M4,5 X-ray production
cross-sections were evaluated

σx
M4,5

= σx
Mα1

+ σx
Mα2

+ σx
Mβ

+ σx
Mζ1

+ σx
Mζ2

(5)

M4,5 subshells average fluorescence yields were evaluated
using the relation:

�M4,5 =
σx

M4,5

σ4 + σ5
, (6)

where σ4(3d3/2) and σ5(3d5/2) are the M shell photoion-
ization cross-section [14].

Experimental average M shell fluorescence (�M )
yields were calculated as explained in our previous
work [12].
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Table 1. M subshell X-ray production cross-sections with theoretical values (cm2/g).

Element σx
M4,5 σx

Mαβ
σx

Mα
σx

Mβ
σx

Mζ

Exp. Theo. Exp. Theo. Theo. Exp. Theo.
90Th 19.125 ± 1.0 20.818 18.022 ± 1.1 11.213 7.840 1.103 ± 0.13 1.765
92U 21.916 ± 1.3 23.031 20.525 ± 1.2 12.358 8.732 1.391 ± 0.15 1.941

Table 2. Average fluorescence yields with theoretical values.

Element �M4,5 �M

Present Exp. Theoretical predictions

Exp. Theo. Ref. [17] Refs. [18,19] Ref. [20]
90Th 0.0656 ± 0.0058 0.0513 0.385± 0.0042 0.0543 0.0451 0.0453
92U 0.0694 ± 0.0063 0.0568 0.0419±0.0050 - 0.0491 0.0502

4 Theoretical calculations

In this work we have calculated M4,5 X-ray production
cross-sections and �4,5 average fluorescence yields for the
Th and U at 5.96 keV incident photon energy using the
following equations:

σx
M4 = [σM1(S14 + S12S24 + S13S34 + S12S23S34) (7)

+ σM2(S24 + S23S34) + σM3S34 + σM4]ω4

σx
M5 = [σM1(S15 + S12S25 + S13S3 + S14S23f45

+ S12S23S35 + S12S24f45 + S13S34f45

+ S12S23S34f45) + σM2(S25 + S24f45 + S23S35

+ S23S34f45 + σM3(S35 + S34f45) (8)
+ σM4f45 + σM5]ω5

σx
M4,5

=
∑

i=4−5

σx
Mi

(9)

where σMi (i = 4, 5) are the M shell photoionization cross-
section [14], ωi (i = 4, 5) are the M sub-shell fluorescence
yields, Sij (i = 1–3, j = 2–5) are Super Coster-Kronig
transition probabilities and f45 Coster-Kronig transition
probabilities [15].

Theoretical M X-ray productions cross-sections

σx
Mα

= σx
M5F5α (10)

σx
Mζ

= σx
M4F4ζ2 + σx

M5F5ζ1 (11)

σx
Mβ

= σx
M4F4β (12)

where Fij (F5α, F5ζ1, F4ζ2, and F4β) are the fraction of
the radiative transitions of the sub-shell Mi (i = 4 and 5)
contained in the jth spectral line.

The Fij values are given by the following

F5α =
Γ (M5 − N6) + Γ (M5 − N7)

Γ5
(13)

F5ζ1 =
Γ (M5 − N3)

Γ5
(14)

F4ζ1 =
Γ (M4 − N2)

Γ4
(15)

F4β =
Γ (M4 − N6)

Γ4
(16)

where Γi (i = 4 and 5) is total radiative width of Mi

sub-shell. This values obtained radiative transition proba-
bilities to fill a vacancy in the M4 and M5 sub-shells [16].

Theoretical average M4,5 subshells fluorescence yields
were calculated for Th and U using the following relation

�M4,5 = 0.4 (ω4 + f45ω5) + 0.6ω5. (17)

This relation has been based on the consideration that the
contribution of M4 and M5 sub-shells to total M X-ray
production cross-sections is about 80% [3].

5 Results and discussion

Experimental σx
M4,5

, X-ray production cross-sections for
Th and U, measured for incident photon energies 5.96 keV,
are presented in Table 1 and compared with theoretical
values. Similarly, ωM4,5 average fluorescence yield values
are listed in Table 2 and compared with theoretical values.

The overall error in present measurements is estimated
to be 7–10%. This error is due to the evaluation of peak
areas (≤3%), the product I0Gε (5–7%), sample thickness
measurements (≈4%), and the absorption correction fac-
tor (≤2%).

We have derived the absolute cross-sections for Mαβ

and Mζ X-rays line as well as the total M production
X-ray cross-sections. We have found Mζ X-ray produc-
tion cross-section values effected on total M shell X-ray
cross-section weak (about 8% of total M shell X-ray cross-
section). Mαβ X-rays line arises due to vacancy in the M4

and M5 sub-shells. The contribution of M4 and M5 sub-
shells to total M X-ray production cross-sections is about
92%.

The experimental average M shell fluorescence yields
are in good agreement with the theoretical estimates based
on relativistic Dirac–Hartree–Slater theory. M4,5 subshells
average fluorescence yields (�M4,5) values 22–27% higher
than calculated theoretical values. The results for aver-
age fluorescence yields (�M ) are 14.6% and 15–16.5%
larger than the theoretical values of Chen [18,19] and
Hubbell [20], respectively. The discrepancy between the
measured and theoretical values of average fluorescence
yield may be due to systematic errors in the physical pa-
rameters.
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